

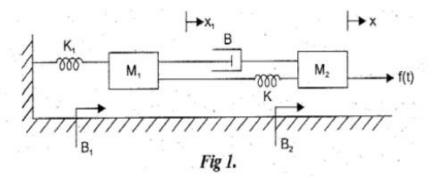
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY: PUTTUR

(AUTONOMOUS)

B.Tech III Year I Semester Supplementary Examinations July-2022

CONTROL SYSTEMS

(Common to EEE & ECE)


Time: 3 hours

Max. Marks: 60

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

1 Write the differential equation governing the mechanical system as shown in figure 1 L1 12M and determine the transfer function

OR

2	a Give the block diagram reduction rules to find the transfer function of the system.	L4	8M
	b List the properties of signal flow graph.	L4	4M
	UNIT-II		
3	Find all the time domain specifications for a unity feedback control system whose	L1	12M
	open loop transfer function is given by $G(S) = 25/S(S+5)$		
OR			
4	Define steady state error? Derive the static error components for Type 0, Type 1 &	L1	12M
	Type 2 systems?		

UNIT-III

- 5 With the help of Routh's stability criterion find the stability of the following systems L5 12M represented by the characteristic equations
 - i) s 4 + 8 s 3 + 18 s 2 + 16s + 5 = 0.

ii) s 6 + 2s5 + 8s4 + 12s3 + 20s2 + 16s + 16 = 0.

OR

UNIT-IV

7 Develop the Bode plot for the following Transfer Function L3 12M $G(s) H(s) = 20(0.1S+1)/S^2(0.2S+1)(0.025S+1)$; From the bode plot determine (i) Gain Margin (ii) Phase Margin (ii) Comment on the stability

Q.P. Code: 19EE0212

9

OR

8 Sketch the Polar plot for the following Transfer Function L5 12M G(s) H(s) = 1/S(1+S)(1+2S)

L2 12M

L2

L1

 $4\mathbf{M}$

8M

$$\dot{X} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{pmatrix} X + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} U \text{ and } Y = (1 \ 0 \ 0) X$$

Determine: (i) The Eigen Values. (ii) The State Transition Matrix.

OR

10 a Explain the properties of STM.

A state model of a system is given as:

b For the state equation:

$$\dot{X} = \begin{pmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{1} & \mathbf{1} \end{pmatrix} \mathbf{X} + \begin{pmatrix} \mathbf{0} \\ \mathbf{1} \end{pmatrix} \mathbf{U} \text{ when, } \mathbf{X}(\mathbf{0}) = \begin{pmatrix} \mathbf{1} \\ \mathbf{0} \end{pmatrix}.$$

Find the solution of the state equation for the unit step input.

*** END ***

